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Abstract. We propose to test perturbative QCD(pQCD) in the Regge limit by means of diffractive photon
scattering, γp → γX, at large |t| and very high energies, W 2 � |t| � Λ2

QCD. The helicity amplitudes of
this process were calculated using the Lipatov solution of the BFKL equation for t 6= 0. We found that the
perturbatively calculated cross section for this process is comparable in magnitude to the cross section for
J/Ψ photoproduction assuming similar kinematics.

1 Introduction

In the quest for more and better tests of pQCD in the
Regge limit, better known as BFKL [1], we suggest hard
diffractive photon-proton scattering at large momentum
transfer |t|. This process is closely related to the diffrac-
tive production of vector mesons at large |t| [2–4], where
the vector meson in the final state takes the place of the
photon. Although suppressed by an extra αem, diffractive
γp-scattering has the great advantage of being completely
calculable. No phenomenological input in terms of a vector
meson wave function is needed. The signature of this pro-
cess is also very clear. The photoproduced photon is scat-
tered into the backward region of the detector at a very
low angle. The transverse momentum transferred from the
photon is balanced by a jet in the forward region, which
does not need to be resolved. More immportant is the
very large rapidity gap between the photon in the back-
ward and the hadronic system in the forward region. The
idea to use this process as a test for pQCD was already
discussed in [5].

A very precise definition of the cross section is not
necessary, since we are interested in a rough estimate. In-
deed, since BFKL enters on the level of the amplitude
the resulting enhancement is very large and therefore the
theoretical uncertainty as well. We work with the leading
order BFKL-solution which is by now known to receive
strong NLO-corrections [6]. Already a reduction by fac-
tor of 1/2 in the LO-BFKL-kernel leads to an order of
magnitude reduction in the elastic cross section. Another
source of uncertainty is the influence of nonperturbative
effects despite the fact that we require a large momen-
tum transfer |t|. On the proton side it has been proven
[7,8] that the large |t|-Pomeron-exchange factorizes in the
sense that it directly couples to partons. The difference
in the coupling to quarks and gluons is only a trivial
colour factor, and the corresponding parton distribution
can be taken from any conventional LO-pdf. As we already

pointed out we are at the present only interested in a first
rough estimate of the pQCD predictions and thus focus
on the elastic photon-quark scattering. For comparison we
include in our numerical analysis the diffractive produc-
tion of J/Ψ and find that both cross sections are close in
magnitude. We also perform a Vector meson Dominance
Model (VDM) inspired estimate for the same cross sec-
tions, which shows that with BFKL the γq-cross section
for large |t| can hardly be matched with the VDM-result
at low |t|. We hope, of course, that the γq-cross section
will be measured at HERA in the near future.

In the technical part of this paper we extend the suc-
cessful concept of the photon wave function [12,13] to
include nonzero momentum transfer. We then convolute
the corresponding expression for the photon wave func-
tion directly in impact-parameter space with the confor-
mal eigenfunction of the nonforward BFKL-solution [10].
This part is presented in a rather detailed way to illustrate
some of the techniques which might be useful in other re-
lated cases, for it seems most appropriate in dealing with
integrals of two-dimensional, conformal field theories. The
impact factor describing the coupling of two gluons via a
quark-box to the photons has effectively been already cal-
culated in QED in the context of photon-photon transition
[9,11], only colour factors needed to be added in the case
of QCD. Since for our calculation we need a somewhat
different form of the impact factor than found in the liter-
ature, we have reconsidered this calculation using slightly
different methods.

The paper contains three technical sections that deal
with the derivation of the γq-cross section. The follow-
ing section is devoted to the generalization of the photon
wave function to include momentum transfer, in Sect. 3 we
explain the convolution of the wave function with the con-
formal BFKL-eigenfunctions, and in Sect. 4 we collect all
pieces to derive the final expression for the cross section.
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In Sect. 5 we present the numerical results and conclude
with Sect. 6.

2 Photon wave function

In the standard case of deep inelastic scattering the pho-
ton appears only in the initial state, and its wave function
[12,13] can be formulated in the simplifying photon-proton
CMS. In this frame the momentum of the photon has only
longitudinal components and no transverse. When we con-
sider, however, photon elastic scattering we have two pho-
tons, one in the initial state and the second in the final
state of the process. We can still choose a frame in which
one of the photons has only longitudinal components, but
the second photon receives transverse components due to
the momentum transfer q. We therefore have to general-
ize the photon wave function description to also include
transverse components. We use the standard notation for
deep inelastic scattering such as Q′ (final state photon)
and p (proton). The light cone vectors Q′ and p define the
CMS we work in. For our discussion it is easier to assume
that the outgoing photon, which includes the momentum
transfer q, lies along the z-axis of our system and the in-
coming photon with the momentum Q has components in
the transverse plane, i.e. Q = Q′ + q. The corresponding
polarization vector for the incoming photon reads:

ε(±)µ = ε(±)⊥µ − q⊥ · ε(±)⊥
p · Q

pµ (2.1)

with two helicity states (±) in the transverse plane of our
frame:

ε⊥(±) =
1√
2
(0, 1,±i, 0) . (2.2)

The photon couples to a quark-antiquark pair with the
momenta k1 and k2, respectively. Using Sudakov decom-
position we write the momenta as (s = 2Q′ · p = 4Q′

0p0):

q = βq p + q⊥ ,

k1 = α Q′ +
(

βq +
k2
2⊥

(1 − α) s

)
p + k1⊥ , (2.3)

k2 = (1 − α) Q′ − k2
2⊥

(1 − α) s
p + k2⊥ .

One of these quark momenta is offshell depending on
where the t-channel gluon couples. In the case discussed
here it is k1 as indicated in Fig. 1. The momentum k1 can
be made onshell by adding a component with respect to
p. We make use of this trick in order to break up the trace
of the quark loop by inserting quark spinors with onshell
momenta. This can be done without effecting the final re-
sult, because the adjacent gluon coupling has as leading
component a /p, which cancels our proposed modification
in the trace. In the trace we therefore substitute k1 by k̃1:

k̃1 = α Q′ − k2
1⊥

α s
p + k1⊥ . (2.4)

Q Q’

p p+q

k1

k2

Fig. 1. Diagrammatical representation of elastic γq-scattering
with BFKL-ladder exchange

The denominator of our wave function contains of course
the original virtuality k2

1. In the following, we will change
the transverse components for the momenta from
Minkowski space to Euclidean, i.e. k⊥ → k with k2

⊥ =
−k2, and despite the fact that the photon virtuality is
negative we will use the convention that Q2 = |Q2| =
−βqs + q2.

After these preliminaries it is rather straightforward to
introduce the photon wave function (h = ± for the quark
helicity, hγ = ± for the photon helicity):

Ψ(hγ ,h)(k1,k2, α) = e
ū(k2, h) /ε(hγ) u(k̃1, h)

√
α(1 − α)

[k1 − αq]2 + α(1 − α)Q2

×(2π)2δ2(q − k1 − k2) . (2.5)

In the expression above we have made use of the relation
v(k̃1,−h) = u(k̃1, h), and we have already incorporated a
factor α from the gluon vertex and a phase space contri-
bution 1/

√
α(1 − α). The propagator itself has the form

|k2
1| = ([k1 − αq]2 + α(1 − α)Q2)/(1 − α). In the chiral

representation the spinors are of the following form (in
complex notation for k1):

u(k̃1,+) =

(
k∗

1√
2αQ′

0

,
√

2αQ′
0 , 0 , 0

)
, (2.6)

u(k̃1,−) =

(
0 , 0,

√
2αQ′

0 ,
−k1√
2αQ′

0

)
,

and similar expressions for u(k2, h) by substituting k1 by
k2 and α by 1 − α.

Equation (2.5) together with (2.1) and (2.6) yields
the following expressions for the wave function (for better
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readability we present all helicity states explicitly):

Ψ(+,+)(k1,k2, α) = −
√

2 e α [k2 − (1 − α)q]
[k2 − (1 − α)q]2 + α(1 − α)Q2

×(2π)2δ2(q − k1 − k2) ,

Ψ(+,−)(k1,k2, α) = −
√

2 e (1 − α) [k1 − αq]
[k1 − αq]2 + α(1 − α)Q2

×(2π)2δ2(q − k1 − k2) ,

Ψ(−,+)(k1,k2, α) = −
√

2 e (1 − α) [k∗
1 − αq∗]

[k1 − αq]2 + α(1 − α)Q2

×(2π)2δ2(q − k1 − k2) , (2.7)

Ψ(−,−)(k1,k2, α) = −
√

2 e α [k∗
2 − (1 − α)q∗]

[k2 − (1 − α)q]2 + α(1 − α)Q2

×(2π)2δ2(q − k1 − k2) .

One could of course apply momentum conservation k2 =
q−k1 and rewrite all equations in terms of k1 only. But it
is the form presented in (2.8) which emerges first and still
exhibits the fact that the same factor α(1 − α) appears
in front of q in the numerator of all expressions. The lat-
ter is a result of the longitudinal contribution pµ in the
polarization vector (2.1), which is the same for all quark
helicities.

We transform into impact-parameter space by taking
the Fourier transform with respect to k1 and k2:∫

d2k1d
2k2

(2π)4
Ψ(k1,k2, α) eik1·r1 eik2·r2

= Ψ(r1, r2, α) , (2.8)

and arrive at:

Ψ(+,+)(r1, r2, α) =
√

2 i e

2π
α
√

α(1 − α)Q2

×K1(
√

α(1 − α)Q2 |r|) r
|r| eiαq·r1 ei(1−α)q·r2 ,

Ψ(+,−)(r1, r2, α) =
√

2 i e

2π
(1 − α)

√
α(1 − α)Q2

×K1(
√

α(1 − α)Q2 |r|) r
|r| eiαq·r1 ei(1−α)q·r2 ,

Ψ(−,+)(r1, r2, α) =
√

2 i e

2π
(1 − α)

√
α(1 − α)Q2

×K1(
√

α(1 − α)Q2 |r|) r∗

|r| eiαq·r1 ei(1−α)q·r2 ,

Ψ(−,−)(r1, r2, α) =
√

2 i e

2π
α
√

α(1 − α)Q2

×K1(
√

α(1 − α)Q2 |r|) r∗

|r| eiαq·r1 ei(1−α)q·r2 (2.9)

with r = r1 − r2 and K1 being the MacDonald (Bessel)
function. The whole q-dependence is shifted into phase
factors, and the rest is the same as for the ’forward’ case,
i.e. q = 0.

One could now go ahead and work with the above wave
function for virtual photons, i.e study the scattering of vir-
tual photons into virtual photons. At this point we would

like to keep the analysis a bit simpler and consider only
real photons. To this end we take Q2 → 0 and (2.9) re-
duces to:

Ψ(+,+)(r1, r2, α) =
√

2 i e

2π
α

r
|r|2 eiαq·r1 ei(1−α)q·r2 ,

Ψ(+,−)(r1, r2, α) =
√

2 i e

2π
(1 − α)

r
|r|2 eiαq·r1

×ei(1−α)q·r2 ,

Ψ(−,+)(r1, r2, α) =
√

2 i e

2π
(1 − α)

r∗

|r|2 eiαq·r1

×ei(1−α)q·r2 , (2.10)

Ψ(−,−)(r1, r2, α) =
√

2 i e

2π
α

r∗

|r|2 eiαq·r1 ei(1−α)q·r2 .

In the next step we have to consider the wave function
for the outgoing photon Ψ∗. It is basically the complex
conjugate of the previous expression except for the phase
factors, which are absent because the momentum for the
outgoing photon is simply Q′, i.e. q = 0:

Ψ∗
(+,+)(r1, r2, α) = −

√
2 i e

2π
α

r∗

|r|2 ,

Ψ∗
(+,−)(r1, r2, α) = −

√
2 i e

2π
(1 − α)

r∗

|r|2 ,

Ψ∗
(−,+)(r1, r2, α) = −

√
2 i e

2π
(1 − α)

r
|r|2 , (2.11)

Ψ∗
(−,−)(r1, r2, α) = −

√
2 i e

2π
α

r
|r|2 .

The impact factor is essentially the product of the two
sets of wave functions, since the imaginary part of our am-
plitude dominates and all intermediate quarks are onshell.
With regard to the two t-channel gluons located at ρ1 and
ρ2, we have to make sure that each of the gluons couples
to each of the quarks (g is the strong coupling constant):

Φ(hγ ,h∗
γ)(ρ1, ρ2) = g2

∑
h= ±

∫ 1

0
dα

∫
d2r1d

2r2 Ψ(hγ ,h)

×(r1, r2, α) Ψ∗
(h∗

γ ,h)(r1, r2, α)

×[δ2(r1 − ρ1) − δ2(r2 − ρ1)]
×[δ2(r1 − ρ2) − δ2(r2 − ρ2)] . (2.12)

The normalization will be adjusted later in the full expres-
sion for the amplitude. Spelling out the previous expres-
sion we find:

Φ(+,+)(ρ1, ρ2) = (2.13)

Φ(−,−)(ρ1, ρ2) =
e2g2

2π2

∫ 1

0
dα

∫
d2r1d

2r2 [α2 + (1 − α)2]

× 1
|r|2 eiαq·r1 ei(1−α)q·r2

×[δ2(r1 − ρ1) − δ2(r2 − ρ1)]
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×[δ2(r1 − ρ2) − δ2(r2 − ρ2)] ,

Φ(+,−)(ρ1, ρ2) =
e2g2

π2

∫ 1

0
dα

∫
d2r1d

2r2 α(1 − α)

× r2

|r|4 eiαq·r1 ei(1−α)q·r2

×[δ2(r1 − ρ1) − δ2(r2 − ρ1)]
×[δ2(r1 − ρ2) − δ2(r2 − ρ2)] ,

Φ(−,+)(ρ1, ρ2) =
e2g2

π2

∫ 1

0
dα

∫
d2r1d

2r2 α(1 − α)

× r∗2

|r|4 eiαq·r1 ei(1−α)q·r2

×[δ2(r1 − ρ1) − δ2(r2 − ρ1)]
×[δ2(r1 − ρ2) − δ2(r2 − ρ2)] .

Φ(+,+) and Φ(−,−) are contributions without helicity flip
and Φ(+,−) and Φ(−,+) are those with flip. It is not ap-
parent from (2.13) that the two helicity flip contributions
are the same, but the following calculation will show that
they coincide as one may expect on general grounds. In
the end it is enough to deal with a single helicity flip and
a single helicity non-flip amplitude.

3 Projection on conformal eigenstates

In this section we exploit the properties of conformal in-
variance of the BFKL-equation [10], which can be solved
in terms of the conformal covariant eigenfunctions:

Eν(ρ10, ρ20) =
∣∣∣∣ ρ12

ρ10ρ20

∣∣∣∣
1+2iν

, (3.1)

where ν is the conformal weight. We have ignored the
conformal spin n that is required to form a complete set.
In practice, though, any contribution with n 6= 0 gives
a subleading contribution at high energies. If one wished
to do so, the following calculation can be generalized to
include n.

In projecting the impact factor on the eigenfunction we
have to perform the following integration (ρ10 = ρ1 − ρ0,
etc.):∫

d2ρ1d
2ρ2 Φ(hγ ,h∗

γ)(ρ1, ρ2) Eν(ρ10, ρ20) . (3.2)

We realize that in two terms of (2.13) the δ-function forces
ρ1 and ρ2 into one point which results in a vanishing con-
tribution due to a zero in Eν ( Re[1 + 2iν] has to be kept
positive). The second observation is the symmetry in ρ1
and ρ2 which allows one to write the whole amplitude in
one term multiplied by 2 (non-flip here):

e2g2

π2

∫ 1

0
dα [α2 + (1 − α)2]

∫
d2r1d

2r2
1

|r|2 eiαq·r1

×ei(1−α)q·r2

∣∣∣∣ r
(r1 − ρ0)(r2 − ρ0)

∣∣∣∣
1+2iν

. (3.3)

We will shift r1 and r2 by ρ0 generating an overall phase
factor and then substitute r1 by r = r1 − r2:

e2g2

π2 eiq·ρ0

∫ 1

0
dα [α2 + (1 − α)2]

∫
d2r d2r2 eiαq·r

×eiq·r2 |r|−1+2iν |(r + r2) r2|−1−2iν . (3.4)

The overall phase factor will be ignored for the moment,
and will be reconsidered at the end of this section. We
carry on in our calculation shifting r2 by −α r, eliminating
the phase factor that depends on r :

e2g2

π2

∫ 1

0
dα [α2 + (1 − α)2]

∫
d2r d2r2 eiq·r2 |r|−1+2iν |

×[r2 + (1 − α)r] [r2 − αr]|−1−2iν . (3.5)

We then switch from the conventional representation of
the transverse vectors to the corresponding complex nota-
tion, i.e from r = (r1, r2) to a = r1 + i r2 and b = r1 − i r2,
and make use of the freedom to rotate our system such
that q is real:

−e2g2

4π2

∫ 1

0
dα [α2 + (1 − α)2]

×
∫

da db da2 db2 eiq/2(a2+b2) (a b)−1/2+iν

×{[a2 + (1 − α)a] [b2 + (1 − α)b]

×[a2 − α a][b2 − α b]}−1/2−iν . (3.6)

In what follows we rescale a and b by a2 and b2, respec-
tively, and thus factorize the integration in a, b and a2, b2:

−e2g2

4π2

∫ 1

0
dα [α2 + (1 − α)2]

×
∫

da2 db2 eiq/2(a2+b2) (a2 b2)−1/2−iν

×
∫

da db (a b)−1/2+iν {[1 + (1 − α)a] [1 + (1 − α)b]

×[1 − α a][1 − α b]}−1/2−iν . (3.7)

We now rescale a2 and b2 by 2i/q:

e2g2

4π2

(
2
q

)1−2iν ∫ 1

0
dα [α2 + (1 − α)2]

×
∫

da2 db2 e−(a2+b2) (−a2 b2)−1/2−iν

×
∫

da db (a b)−1/2+iν {[1 + (1 − α)a] [1 + (1 − α)b]

×[1 − α a][1 − α b]}−1/2−iν , (3.8)

and note the minus sign in the factor (−a2 b2)−1/2−iν .
At this point we have to consider the analytic struc-

ture of our integrand and the proper path of integration.
We focus on the a2-integration by keeping b2 fixed, quasi
as a parameter. With the minus sign there is a cut in the
complex a2 plane to the right when b2 > 0 or to the left
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when b2 < 0. Since the exponent also has a minus sign, we
would like to shift the integration contour to the right. A
nonzero contribution only arises if a singularity is encoun-
tered, i.e. if b2 is positive. Closing the contour around the
cut means we have to take the discontinuity along the cut
and then integrate in a2 over the positive axis:∫

da2 db2 e−(a2+b2) (−a2 b2)−1/2−iν

= − 2i sin[(−1/2 − iν)π]

×
∫ ∞

0
da2 a

−1/2−iν
2 e−a2

∫ ∞

0
db2 b

−1/2−iν
2 e−b2 ,

= − 2i sin[(−1/2 − iν)π] Γ 2(1/2 − iν) . (3.9)

The − 2i sin[(−1/2 − iν)π] is the result of taking the
discontinuity.

In a similar way the integration over a and b can be
performed. We again keep b fixed and consider the inte-
gration over a. The integrand is convergent even without
the presence of an exponent. There will be a nonzero con-
tribution only if the integration contour runs between two
cuts, those two cuts which emerge on both sides of the
complex a-plane when −1/(1 − α) < b < 1/α. We have
to contend, however, with another cut due to the factor
(a b)−1/2+iν in (3.8). This lies to the right or to the left
depending on the sign of b. Therefore, we have to consider
two cases: −1/(1 − α) < b < 0 and 0 < b < 1/α, closing
the contour to that side which has only one cut:∫

da db (a b)−1/2+iν {[1 + (1 − α)a] [1 + (1 − α)b]

×[1 − α a][1 − α b]}−1/2−iν

= 2i sin[(−1/2 − iν)π]

{∫ 0

−1/(1−α)
db

∫ −1/(1−α)

−∞
da

+
∫ 1/α

0
db

∫ ∞

1/α

da

}
(a b)−1/2+iν

×{−[1 + (1 − α)a] [1 + (1 − α)b]

×[1 − α a][1 − α b]}−1/2−iν , (3.10)

= 4i sin[(−1/2 − iν)π] [α(1 − α)]−1/2−iν

×
∫ 1

0
db b−1/2+iν

{
[1 − b][1 +

α

1 − α
b]
}−1/2−iν

×
∫ 1

0
da a−1/2+iν

{
[1 − a][1 +

1 − α

α
a]
}−1/2−iν

,

where we have made use of the symmetry between α and
1 − α. The integrals above can readily be expressed in
terms of Hypergeometric functions:

= 4i sin[(−1/2 − iν)π] [α(1 − α)]−1/2−iν

×Γ 2(1/2 − iν) Γ 2(1/2 + iν)

×2F1

(
1/2 + iν, 1/2 + iν; 1;

α

α − 1

)

×2F1

(
1/2 + iν, 1/2 + iν; 1;

α − 1
α

)
,

= 4ı sin[(−1/2 − iν)π]
π2

sin2[(1/2 − iν)π]
×2F1 (1/2 − iν, 1/2 + iν; 1;α)
×2F1 (1/2 − iν, 1/2 + iν; 1; 1 − α) . (3.11)

Putting the results in (3.9) and (3.11) back into (3.8) we
get:

2 e2g2
(

2
q

)1−2iν

Γ 2(1/2 − iν)

×
∫ 1

0
dα [1 − 2(1 − α) + 2(1 − α)2]

×2F1 (1/2 − iν, 1/2 + iν; 1; 1 − α)
×2F1 (1/2 − iν, 1/2 + iν; 1;α) . (3.12)

For the flip amplitude we have to proceed in a very
similar way and find:

− 2 e2g2
(

2
q

)1−2iν

Γ 2(1/2 − iν) (1/4 + ν2)

×
∫ 1

0
dα α(1 − α)

×2F1 (1/2 − iν, 1/2 + iν; 2; 1 − α)
×2F1 (1/2 − iν, 1/2 + iν; 2;α) , (3.13)

which is the same for the (+,−)- or the (−,+)-amplitude.
The further calculation is rather tedious but straight

forward. The main point is to expand the first Hyper-
geometric function, perform the α-integration and then
reduce the remaining series. The final result takes on the
following form:

e2g2
(

2
q

)1−2iν
Γ (1/2 − iν)
Γ (1/2 + iν)

π2

4
11/4 + 3ν2

1 + ν2

tanh(πν)
πν

(3.14)
for the non-flip amplitude and

e2g2
(

2
q

)1−2iν
Γ (1/2 − iν)
Γ (1/2 + iν)

π2

4
1/4 + ν2

1 + ν2

tanh(πν)
πν

(3.15)
for the flip amplitude.

We are left with the calculation of the other end of
the BFKL-Pomeron, i.e. the coupling to a quark(gluon)
in the proton. We follow the consideration in [7], where
it was noted that a simple projection of the eigenfunction
(3.1) to a single quark line would give zero. In reality the
quark is accompanied by a bunch of particles with op-
posite colour far away in impact-parameter space. Let us
place the quark in impact-parameter space at r′

1 and the
opposite colour charge at r′

2. In the limit |r′
2| � |r′

1| the
eigenfunction (3.1) reduces to:

Eν(ρ′
10, ρ

′
2 → ∞) ∼

∣∣∣∣ 1
ρ′
10

∣∣∣∣
1−2iν

. (3.16)

The momentum coming from the photon is transferred to
the quark, but momentum conservation is imposed later
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on by doing the final ρ0-integration. At the moment we
give the quark a general momentum kick q′, which leads
to a phase factor eiq′·r′

1 . The integration over r′
2 is factored

off and only the r′
1-integration remains:

2g2
∫

d2r′
1

(2π)2

∣∣∣∣ 1
r′
1 − ρ0

∣∣∣∣
1−2iν

e−iq′·r′
1 (3.17)

= g2
(

2
q

)1+2iν
Γ (1/2 + iν)
Γ (1/2 − iν)

1
2π

e−iq′·ρ0 .

A factor 2 was added to account for the coupling of both
gluons.

We have to recall that we dropped the phase factor
eiq·ρ0 in (3.4). In the full amplitude the two phase factors
have to be drawn together and the integration over ρ0
forces q and q′ to be equal:∫

d2ρ0ei(q−q′)·ρ0 = (2π)2 δ2(q − q′) . (3.18)

For us it is important to note the extra factor (2π)2 which
is generated in the above equation.

4 The complete cross section

In order to write down the cross section we have to find
the complete expression for the amplitude. Cross section
and amplitude are linked through the relation (|t| = q2):

dσ

dt
(γq → γq)

=
1
2

|A(+,+)|2 + |A(−,−)|2 + |A(−,+)|2 + |A(+,−)|2
16πs2 ,

=
|A(+,+)|2 + |A(+,−)|2

16πs2 . (4.1)

All missing factors not yet included are extracted from
the ’Born’-diagram: 6/9 for the light flavour charges, 4/6
for the colour (in the case of γq-scattering), 4 from the
coupling to the lower line, s/4 from the Sudakov decom-
position, 1/2(2π)3 for the onshell quarks (1/2 because we
need the imaginary part and not the discontinuity) and
1/(2π)8 from the phase space integral. All factors related
to Fourier transformations have been taken care of, only
the factor (2π)2 from (3.18) needs to be included. Com-
piling all these factors and adding them together with ex-
pression (3.14),(3.15) and (3.17) we finally obtain for the
amplitudes:

A(+,+) = i
6
9

αem α2
s

4π

3
s

|t|
∫

dν
ν2

(1/4 + ν2)2

×11/4 + 3 ν2

1 + ν2

tanh(πν)
πν

(
s

|t|
)ω(ν)

, (4.2)

and

A(+,−) = i
6
9

αem α2
s

4π

3
s

|t|
∫

dν
ν2

(1/4 + ν2)2

×1/4 + ν2

1 + ν2

tanh(πν)
πν

(
s

|t|
)ω(ν)

, (4.3)

where

ω(ν) =
3αs

π
[2 Ψ(1)−Ψ(1/2+ iν)−Ψ(1/2− iν)] . (4.4)

One can derive the contribution for γg-scattering simply
by multiplying the previous expressions by a factor 9/4
(due to colour).

There is a striking similarity between the results here
and those found for the forward jet cross section with
azimuthal dependence [14]. The factor 11/4+3 ν2

1+ν2 for the
non-flip contribution is identical to the corresponding inte-
grated contribution to the forward jet cross section,
whereas 1/4+ν2

1+ν2 , the flip result, is found for the azimuth
dependent part.

The saddle point approximation for the amplitudes
(4.2) and (4.3) yields:

A(+,+) = 11 i
6
9

αem α2
s

s

|t|
8
3

(
π

7ζ(3) η

)3/2

eη ln(4) ,

(4.5)
and

A(+,−) = i
6
9

αem α2
s

s

|t|
8
3

(
π

7ζ(3) η

)3/2

eη ln(4) ,

(4.6)
where η is defined as:

η =
6αs

π
ln
(

s

|t|
)

. (4.7)

In this approximation one nicely sees the dominance of
the non-flip versus the flip amplitude given by the factor
of 11 in (4.5). On the scale we perform our numerical
analysis the difference between the exact result and the
saddle point approximation is marginally less than a factor
of 2.

5 Numerical results

Since we are mainly interested in a rough estimate for
the cross section, we will concentrate on elastic photon-
quark scattering. In order to get an impression for the size
of the cross section we compare with a different process,
namely diffractive J/Ψ -photoproduction. In addition, we
use the Vector meson Dominance Model (VDM) to gain
an estimate of the quasi elastic γq scattering at low |t|, and
we perform a comparison between the full BFKL solution
and the leading order two-gluon exchange.

The formulae for the J/Ψ -cross section are taken from
[2] and [3]. The leading order two gluon exchange can be
more easily calculated from the momentum representation
of the photon wave function (2.8). The amplitudes in this
case are given by:

A(+,+) = i
s

|t| αemα2
s

26

33

(
π2

3
+ 1
)

, (5.1)

A(+,−) = i
s

|t| αemα2
s

25

32 .
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Fig. 2. The cross section for diffrac-
tive production of photons and J/Ψ ’s at
W = 200 GeV . The solid line denotes
the BFKL-solution (straight line for pho-
tons), the dashed line the leading order
two-gluon exchange (straight line again for
photons), and the dotted line shows the
VDM-estimate (the upper line is for J/Ψ).
In addition, the saddle point approxima-
tion is given as dash-dotted line

A VDM-estimate can be achieved by employing the op-
tical theorem which relates the elastic with the total γp-
cross section. The total γp-cross section at the energy of
W = 200 GeV is approximately 150 µb. This leads to-
gether with the t-slope of 10 GeV −2 to an integrated elas-
tic γp-cross section of 115 nb. From the diffractive produc-
tion of ρ0’s one knows that the ratio of proton dissociation
versus elastical proton scattering is 1/2 [15]. Following the
additive quark model we divide the elastic cross section by
another factor of 9 (in total 18) which then gives an es-
timate for the γq-scattering of 6.4 nb at W = 200GeV .
The diffractive slope in |t| is according to the ρ0-data
5.3 GeV −2 for events with proton dissociation. Altogether
one finds:

dσ

dt
(γ) ≈ 34.1 nb exp(−5.3 |t| GeV −2) . (5.2)

Taking the measured cross section for J/Ψp at the same
energy and dividing it by 9, we find a somewhat lower
value. The main difference is the much smaller slope of
1.6 GeV −2 which is due to the large mass:

dσ

dt
(J/Ψ) ≈ 4.4 nb exp(−1.6 |t| GeV −2) (5.3)

for W = 200GeV . In Fig. 2 we show all discussed options
in one plot. For the perturbative result we have assumed
a constant value for the strong coupling of αs = 0.2 and
W = 200 GeV . The two solid lines are related to the full
BFKL-solution, the straight line denotes the production
of a photon and the curved line the production of J/Ψ . In
addition to the straight solid line we have plotted the sad-
dle point solution (4.5) and (4.6) for γq-scattering which
lies almost on top of the solid line. The dashed lines show
in a similar fashion the cross sections based on the leading
order two-gluon exchange. Again the straight line denotes
the production of a photon and the curved line the produc-
tion of J/Ψ . The strongly curved, dotted lines represent

the VDM-estimates. The line related to the production of
J/Ψ lies above the line for the production of a photon due
to the smaller t-slope.

The VDM-result for γq-scattering seems to contradict
the perturbative result. Moreover, a matching between the
low |t| nonperturbative and high |t| perturbative regime
seems to be difficult. For J/Ψ , on the other hand, a match-
ing seems feasible. The enhancement due to BFKL is ex-
tremely large, in both cases it is a factor of about 100
at |t| = 3 GeV 2 and somewhat smaller (a factor 10) at
|t| = 100 GeV 2.

The fact that the perturbative BFKL-result for γq-
scattering overshoots the VDM-result so massively makes
it hard to believe that the perturbative prediction is close
to the true value. There are two main reasons that should
be mentioned. First, the BFKL-solution is implemented
at Leading Order. NLO-corrections are known to reduce
the cross section substantially. Second, although we con-
sider large-|t|, the internal integration over the transverse
momenta in the virtual loops is performed without any
infrared cutoff. The result is still finite, but dominant con-
tributions might come from the infrared region and thus
is influenced by confinement. This point needs further in-
vestigation by imposing an infrared cutoff on the separa-
tion of the quark-antiquark pair. The consequence of all
conceivable corrections might be a reduction of the cross
section by 1 or 2 orders of magnitude.

6 Conclusions

We have calculated the cross section for γq-elastic scatter-
ing in the Regge limit (W 2 � |t| � Λ2

QCD). The BFKL-
solution for nonzero momentum transfer was used leading
to a strong enhancement of the cross section. The com-
parison with a VDM-calculation indicates, however, that
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the perturbative prediction might be much to high, and
data from HERA would be very valuable in assessing the
validity of the present pQCD result. We also found that
the cross section for elastic γq-scattering is similar in mag-
nitude to the cross section for γq → J/Ψq.

Some effort was put into the detailed presentation of
the method employed for performing the convolution of
the photon wave function with the conformal eigenfunc-
tion. The integrals we were faced with are typical for
two-dimensional conformal field theories. They seem to be
solved most efficiently when complex variables are intro-
duced and the integration is factorized in complex times
complex-conjugate contributions. A similar technique was
used in [16]. We have pointed out that special attention
has to be given to the problem of large infrared contri-
butions. One way of tackling this problem is to keep the
virtuality Q2 of the initial photon high enough [17]. It will
be interesting to see how much the γ∗q-cross section will
decrease when the photon virtuality is increased from 0 to
1 GeV 2.
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Lett. B 375, 301 (1996)
4. D.Yu.Ivanov, Phys. Rev. D 53, 3564 (1996)
5. I.F.Ginzburg, D.Yu. Ivanov, Phys. Rev. D 54, 5523 (1996)
6. V.S.Fadin, L.N.Lipatov, Phys. Lett. B 429, 127 (1998)
7. A.H.Mueller, W.K.Tang, Phys. Lett. B 284 (1992) 123
8. J. Bartels, J.R.Forshaw, H.Lotter, L.N.Lipatov,

M.G.Ryskin, M.Wüsthoff, Phys. Lett. B 348, 589
(1995)

9. H.Cheng, T.T.Wu, Phys. Rev. 182, 1873 (1969)
10. L.N.Lipatov, Sov. Phys. JETP 63, 904 (1986)
11. L.N.Lipatov, G.V.Frolov, Sov. J. Nucl. Phys. 13, 333

(1971)
12. A.H.Mueller, Nucl. Phys. B 335, 115 (1990)
13. N.Nikolaev, B.G.Zakharov, Z. Phys. C 49, 607 (1990)
14. J.Bartels, V.Del Duca, M.Wüsthoff, Z. Phys. C 76, 75
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